- 博客(4)
- 资源 (4)
- 论坛 (1)
- 收藏
- 关注
原创 SVD 与 PCA 的直观解释(3): SVD的直观解释及推导
引子:SVD分解就是把一个实数矩阵M分拆成UDV。U,V都是正交旋转矩阵。这个分拆可以形象的理解为,我要看看这个空间M性质怎么样?那我可以用标准笛卡尔空间来构造出一个一模一样的M空间。想象M空间是个特殊形状的泥塑,笛卡尔空间是块标准的正方形泥块。把笛卡尔空间放在手里,先旋转着看看(即左乘V),再找合适的地方捏捏它(再左乘D),好让它和M一样。最后再旋转(再左乘U),把它摆得和M一样。这样就360度无死角的构造了一个M空间。如果发现M空间有的地方很扁,那么我就掉丢这个维度,这就是SVD的降维,也是SVD的核心
2014-05-24 00:31:27
3672
原创 SVD 与 PCA 的直观解释(1): 线性变换
一直想弄明白SVD分解后面蕴含的直观意义,可这牵扯到矩阵乘法和线性变换物理含义的理解。在考虑SVD用途时又牵扯到PCA降维,而PCA降维里又扯到特征值和特征向量。于是,索性全记下来,供诸位探讨学习。
2014-05-24 00:03:27
6992
1
粒子滤波代码
2014-11-15
李代数与计算机视觉
2016-01-03
svo depth filter 推导补充材料
2016-07-25
白巧克力亦唯心的留言板
发表于 2020-01-02 最后回复 2020-04-10
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人 TA的粉丝