自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

知行合一

厚积薄发,格物致知。简单点,做事的动机简单点。

  • 博客(4)
  • 资源 (4)
  • 论坛 (1)
  • 收藏
  • 关注

原创 graph slam tutorial : g2o 的使用

下载安装g2o,怎么安装,注意安装那些库,并用优化前后的图简单介绍介绍。       g2o作为一个外接程序库在自己程序里怎么使用呢?如果不熟悉cmake的话,可以点击这里(看文章中在工程中查找和使用其他程序库的方法)以及这里。       所以要把g2o程序库文件放到自己的程序里,我们要找到g2o/cmake_modules文件夹,把.cmake文件复制到你的程序目录的modul

2015-10-12 11:06:30 36376 19

原创 graph slam tutorial :从推导到应用3

为了更好地理解graph based slam的过程,本文以二维平面的激光SLAM为例子,先简单介绍如何根据传感器信息构建图,即图优化的前端(front-end)。然后再针对上篇博客的疑问,结合matlab程序,分析图优化的后端(back-end)。

2015-10-12 11:05:25 22194 40

原创 graph slam tutorial :从推导到应用2

在上一部分中通过一个例子大致了解了graph based slam的优化过程。在本篇博客中将提升一个层次,对图优化的求解过程进行推导。由于博文关注的在图构建好以后,如何调整机器人位姿使误差最下。因此,本文主要涉及的是图优化的后端(back-end)。       我们已经知道图优化问题转变成了一个最小二乘问题。根据上篇博客最后一个例子,求机器人SLAM过程中最优轨迹可以表示成求解机器人位姿使得

2015-10-12 11:04:22 23448 27

原创 graph slam tutorial : 从推导到应用1

SLAM问题的处理方法主要分为滤波和图优化两类。滤波的方法中常见的是扩展卡尔曼滤波、粒子滤波、信息滤波等,熟悉滤波思想的同学应该容易知道这类SLAM问题是递增的、实时的处理数据并矫正机器人位姿。比如基于粒子滤波的SLAM的处理思路是假设机器人知道当前时刻的位姿,利用编码器或者IMU之类的惯性导航又能够预测下一时刻的位姿,然而这类传感器有累计误差,所以预测完以后,再将每个粒子的激光传感器数据或者图像

2015-10-12 11:03:58 43306 37

粒子滤波代码

压缩包中有三个粒子滤波的演示程序,一个滤波,一个目标跟踪,一个机器人定位。关于效果,大家可以先看看http://blog.csdn.net/heyijia0327/article/details/41142679。再决定是否下载。

2014-11-15

李代数与计算机视觉

计算机多视角几何中经常看到李代数,指数映射之类的,和我们经常使用的旋转矩阵R不一样,这两个文档很好的说明了他们之间的关系,也可以翻看我的博文讲解http://blog.csdn.net/heyijia0327/article/details/50446140谢谢。

2016-01-03

粒子滤波推导pdf

粒子滤波推导的博客的pdf版,详细推导了粒子滤波的由来,并且有例程代码。

2017-12-28

svo depth filter 推导补充材料

2016-07-25

白巧克力亦唯心的留言板

发表于 2020-01-02 最后回复 2020-04-10

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除