- 博客(4)
- 资源 (4)
- 论坛 (1)
- 收藏
- 关注
原创 graph slam tutorial : g2o 的使用
下载安装g2o,怎么安装,注意安装那些库,并用优化前后的图简单介绍介绍。 g2o作为一个外接程序库在自己程序里怎么使用呢?如果不熟悉cmake的话,可以点击这里(看文章中在工程中查找和使用其他程序库的方法)以及这里。 所以要把g2o程序库文件放到自己的程序里,我们要找到g2o/cmake_modules文件夹,把.cmake文件复制到你的程序目录的modul
2015-10-12 11:06:30
36376
19
原创 graph slam tutorial :从推导到应用3
为了更好地理解graph based slam的过程,本文以二维平面的激光SLAM为例子,先简单介绍如何根据传感器信息构建图,即图优化的前端(front-end)。然后再针对上篇博客的疑问,结合matlab程序,分析图优化的后端(back-end)。
2015-10-12 11:05:25
22194
40
原创 graph slam tutorial :从推导到应用2
在上一部分中通过一个例子大致了解了graph based slam的优化过程。在本篇博客中将提升一个层次,对图优化的求解过程进行推导。由于博文关注的在图构建好以后,如何调整机器人位姿使误差最下。因此,本文主要涉及的是图优化的后端(back-end)。 我们已经知道图优化问题转变成了一个最小二乘问题。根据上篇博客最后一个例子,求机器人SLAM过程中最优轨迹可以表示成求解机器人位姿使得
2015-10-12 11:04:22
23448
27
原创 graph slam tutorial : 从推导到应用1
SLAM问题的处理方法主要分为滤波和图优化两类。滤波的方法中常见的是扩展卡尔曼滤波、粒子滤波、信息滤波等,熟悉滤波思想的同学应该容易知道这类SLAM问题是递增的、实时的处理数据并矫正机器人位姿。比如基于粒子滤波的SLAM的处理思路是假设机器人知道当前时刻的位姿,利用编码器或者IMU之类的惯性导航又能够预测下一时刻的位姿,然而这类传感器有累计误差,所以预测完以后,再将每个粒子的激光传感器数据或者图像
2015-10-12 11:03:58
43306
37
粒子滤波代码
2014-11-15
李代数与计算机视觉
2016-01-03
svo depth filter 推导补充材料
2016-07-25
白巧克力亦唯心的留言板
发表于 2020-01-02 最后回复 2020-04-10
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人 TA的粉丝